EFFECT OF SPECIMEN SHAPE ON THE COMPRESSIVE PARAMETERS OF STEEL FIBER REINFORCED CONCRETE AFTER TEMPERATURE EXPOSURE

Publicado
2018-12-11

    Autores

  • Ramoel Serafini Polytechnic School of University of São Paulo, São Paulo
  • Felipe Pereira Santos Polytechnic School of University of São Paulo
  • Ronney Rodrigues Agra Polytechnic School of University of São Paulo
  • Albert de la Fuente Polytechnic University of Catalonia
  • Antonio Domingues de Figueiredo Polytechnic School of University of São Paulo

Resumo

This study investigated the effect of specimen shape (cylindrical and cubical) on the compressive strength and elastic modulus of steel fiber reinforced concrete after exposure to the temperatures of 150, 300, 450, and 600 °C. Results show that the compressive strength and elastic modulus of the composite significantly reduce with the increase in temperature, independent of the specimen shape. Additionally, a significant difference in the compressive strength and elastic modulus conversion factors for cube-cylinder was verified with the increase in temperature. This study contributes to the limited amount of studies regarding the effect of elevated temperatures on steel fiber reinforced concretes and shows that the elevated temperatures may have a significant effect in the conversion factors for cube-cylinder.

Downloads

Não há dados estatísticos.

Referências

BAŽANT, Z. P.; KAPLAN, M. F. Concrete at high temperatures: material properties and mathematical models. 1st edition. London: Longman, 1996.

CHEN, G. M.; HE, Y. H.; YANG, H.; CHEN, J. F.; GUO, Y. C. Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures. Construction and Building Materials, v. 71, p. 1–15, 2014. DOI: 10.1016/j.conbuildmat.2014.08.012.

DE LA FUENTE, A.; AGUADO, A.; MOLINS, C.; ARMENGOU, J.. Innovations on components and testing for precast panels to be used in reinforced earth retaining walls. Construction and Building Materials, v. 25, n. 5, p. 2198–2205, 2011. DOI: 10.1016/j.conbuildmat.2010.11.003.

DEHESTANI, M.; NIKBIN, I. M.; ASADOLLAHI, S. Effects of specimen shape and size on the compressive strength of self-consolidating concrete (SCC). Construction and Building Materials, v. 66, p. 685–691, 2014. DOI: 10.1016/j.conbuildmat.2014.06.008.

DI PRISCO, M.; PLIZZARI, G.; VANDEWALLE, L. Fibre reinforced concrete: new design perspectives. Materials and Structures, v. 42, n. 9, p. 1261–1281, 2009. DOI: 10.1617/s11527-009-9529-4.

DI PRISCO, M.; TONIOLO, G.. Structural applications of steel fibre reinforced concrete. In: PROCEEDINGS OF INTERNATIONAL WORKSHOP 2000, Milan (Italy). Anais [...]. Milan (Italy): CTE Publ., 2000. Disponível em: http://hdl.handle.net/11311/248435.

FEDERATION INTERNATIONALE DU BETON. Model Code for Concrete Structures 2010. In: Germany: Ernst & Sohn, 2013. p. 434.

FIGUEIREDO, A. D. Concreto reforçado com fibras. 2012. Universidade de São Paulo, São Paulo, 2012. DOI: 10.11606/T.3.2012.tde-18052012-112833. Disponível em: http://www.teses.usp.br/teses/disponiveis/livredocencia/3/tde-18052012-112833/.

GALLUCCI, E.; ZHANG, X.; SCRIVENER, K. L. Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H). Cement and Concrete Research, v. 53, p. 185–195, 2013. DOI: 10.1016/j.cemconres.2013.06.008.
GONNERMAN, H. F. Effect of size and shape of test specimen on compressive strength of concrete. Chicago: Structural Materials Research Laboratory, 1925.

KIM, J. K.; YI, S. T.; PARK, C. K.; EO, S. H. Size effect on compressive strength of plain and spirally reinforced concrete cylinders. ACI Structural Journal, v. 96, n. 1, p. 88–94, 1999.
LAU, A.; ANSON, M. Effect of high temperatures on high performance steel fibre reinforced concrete. Cement and Concrete Research, v. 36, n. 9, p. 1698–1707, 2006. DOI: 10.1016/j.cemconres.2006.03.024.

MACIEL, M. H.; BERNARDO, H. M.; SOARES, G. S.; ROMANO, R. C. O.; CINCOTTO, M. A.; PILEGGI, R. G. Efeito da variação do consumo de cimento em argamassas de revestimento produzidas com base nos conceitos de mobilidade e empacotamento de partículas. Ambiente Construído, v. 18, n. 1, p. 245–259, 2018. DOI: 10.1590/s1678-86212018000100219.

MÜLLER, P.; NOVÁK, J.; HOLAN, J. Destructive and non-destructive experimental investigation of polypropylene fibre reinforced concrete subjected to high temperature. Journal of Building Engineering, v. 26, p. 100906, 2019. DOI: 10.1016/j.jobe.2019.100906.

PACHECO, J.; DE BRITO, J.; CHASTRE, C.; EVANGELISTA, L.. Probabilistic Conversion of the Compressive Strength of Cubes to Cylinders of Natural and Recycled Aggregate Concrete Specimens. Materials, v. 12, n. 2, p. 280, 2019. DOI: 10.3390/ma12020280.

POON, C. S.; SHUI, Z. H.; LAM, L. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cement and Concrete Research, v. 34, n. 12, p. 2215–2222, 2004. DOI: 10.1016/j.cemconres.2004.02.011.

RAMBO, D. A. S.; BLANCO, A.; FIGUEIREDO, A. D.; SANTOS, E. R. F.; TOLEDO, R. D.; GOMES, O. F. M.. Study of temperature effect on macro-synthetic fiber reinforced concretes by means of Barcelona tests: An approach focused on tunnels assessment. Construction and Building Materials, v. 158, p. 443–453, 2018. DOI: 10.1016/j.conbuildmat.2017.10.046.

SCHREIER, H.; ORTEU, J.; SUTTON, M. A. Image Correlation for Shape, Motion and Deformation Measurements. Boston: Springer US, 2009. DOI: 10.1007/978-0-387-78747-3.

SCRIVENER, K.; SNELLINGS, R.; LOTHENBACH, B. A Practical Guide to Microstructural Analysis of Cementitious Materials. 1st edition. London: CRC Press, 2017.

SERAFINI, R.; DANTAS, S. R. A.; SALVADOR, R. P.; AGRA, R. R.; RAMBO, D. A. S.; BERTO, A. F.; FIGUEIREDO, A. D. Influence of fire on temperature gradient and physical-mechanical properties of macro-synthetic fiber reinforced concrete for tunnel linings. Construction and Building Materials, v. 214, p. 254–268, 2019. DOI: 10.1016/j.conbuildmat.2019.04.133.

SERAFINI, R., MENDES, L. M., SALVADOR, R. P., AND DE FIGUEIREDO, A. D. The effect of elevated temperatures on the properties of cold-drawn steel fibers. Magazine of Concrete Research, p. 1–28, 2020. DOI: 10.1680/jmacr.19.00498.

SIM, J.; YANG, K.; KIM, H.; CHOI, B. Size and shape effects on compressive strength of lightweight concrete. Construction and Building Materials, v. 38, p. 854–864, 2013. DOI: 10.1016/j.conbuildmat.2012.09.073.

SOARES, A.; FLORES-COLEN, I.; DE BRITO, J. Influence of slenderness on the compressive strength evaluation of cores of renders. Materials and Structures, z. 48, n. 5, p. 1449–1460, 2015. DOI: 10.1617/s11527-013-0245-8.

TOKYAY, M.; ÖZDEMIR, M. Specimen shape and size effect on the compressive strength of higher strength concrete. Cement and Concrete Research, v. 27, n. 8, p. 1281–1289, 1997. DOI: 10.1016/S0008-8846(97)00104-X.

VYDRA, V.; VODÁK, F.; KAPIČKOVÁ, O.; HOŠKOVÁ, Š. Effect of temperature on porosity of concrete for nuclear-safety structures. Cement and Concrete Research, v. 31, n. 7, p. 1023–1026, 2001. DOI: 10.1016/S0008-8846(01)00516-6.

WU, Bo; YU, Yong; CHEN, Zongping; ZHAO, Xiaolong. Shape effect on compressive mechanical properties of compound concrete containing demolished concrete lumps. Construction and Building Materials, v. 187, p. 50–64, 2018. DOI: 10.1016/j.conbuildmat.2018.07.086.

YI, S.; YANG, E.; CHOI, J. Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete. Nuclear Engineering and Design, v. 236, n. 2, p. 115–127, 2006. DOI: 10.1016/j.nucengdes.2005.08.004.

ZHENG, W.; LI, H.; WANG, Y. Compressive stress–strain relationship of steel fiber-reinforced reactive powder concrete after exposure to elevated temperatures. Construction and Building Materials, v. 35, p. 931–940, 2012. DOI: 10.1016/j.conbuildmat.2012.05.031.
Como Citar
SERAFINI, R. .; SANTOS, F. P. .; AGRA, R. R. .; DE LA FUENTE, A.; FIGUEIREDO, A. D. DE . EFFECT OF SPECIMEN SHAPE ON THE COMPRESSIVE PARAMETERS OF STEEL FIBER REINFORCED CONCRETE AFTER TEMPERATURE EXPOSURE. Journal of Urban Technology and Sustainability, v. 1, n. 1, p. 10-20, 11 dez. 2018.