• Renan Pícolo Salvador São Judas Tadeu University
  • Roberto Munhoz Bueno São Judas Tadeu University
  • Dimas Alan Strauss Rambo São Judas Tadeu University
  • Sandro Martini


Cement production is responsible for 5% of CO2 emissions worldwide. The concern about the pollution derived from the construction industry has brought attention to the need of developing more sustainable construction materials and processes. Admixtures based on nanometric graphene oxide have the potential to enhance mechanical properties and durability of cementitious composites. In this context, an experimental program was conducted to evaluate how the addition of graphene oxide may be used to reduce cement content in concretes, maintaining the same mechanical properties of conventional concretes (control matrices, with no graphene oxide additions). Kinetics of hydration of cement pastes was evaluated by isothermal calorimetry, phase evolution during hydration was determined by X-ray diffraction coupled with quantitative Rietveld analysis and mechanical properties were evaluated by compressive strength. Results indicate that graphene oxide additions provide a faster hydration rate until 24 h and generate a larger amount of C-S-H gel, increasing mechanical strength of the matrix. By the addition of graphene oxide dispersion (0.4% of solid content) at 0.02% by cement weight, cement content reductions of up to 15% may be achieved, maintaining the same compressive strength as the control matrices. From this research, a reduction in cement content to obtain more sustainable construction materials and processes may be achieved.


Não há dados estatísticos.


[1] T. Hills, N. Florin, P.S. Fennell, Decarbonising the cement sector: A bottom-up model for optimising carbon capture application in the UK, J. Clean. Prod. 139 (2016) 1351–1361. doi:10.1016/j.jclepro.2016.08.129.
[2] A. Hasanbeigi, L. Price, E. Lin, Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review, Renew. Sustain. Energy Rev. 16 (2012) 6220–6238. doi:10.1016/j.rser.2012.07.019.
[3] B. Lothenbach, K. Scrivener, R.D. Hooton, Supplementary cementitious materials, Cem. Concr. Res. 41 (2011) 1244–1256. doi:10.1016/j.cemconres.2010.12.001.
[4] S. Sinyoung, K. Kunchariyakun, S. Asavapisit, K.J.D. MacKenzie, Synthesis of belite cement from nano-silica extracted from two rice husk ashes, J. Environ. Manage. 190 (2017) 53–60. doi:10.1016/j.jenvman.2016.12.016.
[5] T.L. Ávalos-Rendón, E.A.P. Chelala, C.J. Mendoza Escobedo, I.A. Figueroa, V.H. Lara, L.M. Palacios-Romero, Synthesis of belite cements at low temperature from silica fume and natural commercial zeolite, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 229 (2018) 79–85. doi:10.1016/j.mseb.2017.12.020.
[6] N.R. Rakhimova, R.Z. Rakhimov, Reaction products, structure and properties of alkali-activated metakaolin cements incorporated with supplementary materials - A review, J. Mater. Res. Technol. 8 (2019) 1522–1531. doi:10.1016/j.jmrt.2018.07.006.
[7] L. Senff, J.A. Labrincha, V.M. Ferreira, D. Hotza, W.L. Repette, Effect of nano-silica on rheology and fresh properties of cement pastes and mortars, Constr. Build. Mater. 23 (2009) 2487–2491. doi:10.1016/j.conbuildmat.2009.02.005.
[8] M. Rupasinghe, R. San Nicolas, P. Mendis, M. Sofi, T. Ngo, Investigation of strength and hydration characteristics in nano-silica incorporated cement paste, Cem. Concr. Compos. 80 (2017) 17–30. doi:10.1016/j.cemconcomp.2017.02.011.
[9] S. Ghazizadeh, P. Du, N.T. Skipper, Y. Bai, Understanding the behaviour of graphene oxide in Portland cement paste, Cem. Concr. Res. 111 (2018) 169–182. doi:10.1016/j.cemconres.2018.05.016.
[10] R.P. Salvador, D.A.S. Rambo, R.M. Bueno, K.T. Silva, A.D. de Figueiredo, On the use of blast-furnace slag in sprayed concrete applications, Constr. Build. Mater. 218 (2019) 543–555. doi:10.1016/j.conbuildmat.2019.05.132.
[11] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 5738: Concreto - Procedimento para moldagem e cura de corpos de prova, 2015. doi:01.080.10; 13.220.99.
[12] R. SNELLINGS, X-ray powder diffraction applied to cement, in: A Pract. Guid. to Microstruct. Anal. Cem. Mater., CRC Press, 2015: pp. 107–176. doi:doi:10.1201/b19074-5.
[13] M.H. Maciel, G.S. Soares, R.C. de O. Romano, M.A. Cincotto, Monitoring of Portland cement chemical reaction and quantification of the hydrated products by XRD and TG in function of the stoppage hydration technique, J. Therm. Anal. Calorim. (2018). doi:10.1007/s10973-018-7734-5.
[14] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 5739: Concreto - Ensaio de compressão de corpos de prova cilíndricos, 2018. doi:01.080.10; 13.220.99.
[15] R.P. Salvador, S.H.P. Cavalaro, M.A. Cincotto, A.D. De, Parameters controlling early age hydration of cement pastes containing accelerators for sprayed concrete, Cem. Concr. Res. 89 (2016) 230–248. doi:10.1016/j.conbuildmat.2016.02.101.
Como Citar
SALVADOR, R. P. .; BUENO, R. M. .; RAMBO, D. A. S. .; MARTINI, S. . APPLICATION OF GRAPHENE OXIDE IN CEMENTITIOUS COMPOSITES FOR CEMENT CONTENT REDUCTION . Journal of Urban Technology and Sustainability, v. 1, n. 1, p. 4-9, 26 dez. 2018.